Introduction to Java English Name:

Worksheet: 2D Array Practice 2 ©2025 Chris Nielsen — www.nielsenedu.com

1.

a)|of int with five rows and

b)|of String with seven

NOoO bW N -

Ooo~NOCULTRRW N —

Write the statement that will declare a variable and initialize it to a two-dimensional array:

int[]J[] arr = new double[5][6];

six columns.

rows and no space String[] arr = new String[7]1[];
allocated for columns.

Using a for loop, write a method named
upperTriangular that takes a single integer
parameter, NUMROWS, and allocates a two-

double[][] table

dimensional array where the number of rows is equal doublef] 0 1 2

to nUMRows. The first row of the array is equal in 0 —> 00 [00 [00 |
length to numRows, and each subsequent row is one 1

less than the previous row. For example, if numRows 2

is equal to 3, the table to the right is produced.

public static double[][] upperTriangular(int numRows) <{
double[][] table = new double[numRows][];
for(int 1 = 0; 1 < numRows; 1i++) {
table[1] = new double[numRows - 1i];

}

return table;

Write a method named sumRows that takes a two-dimensional array of double named matrix and
returns a one-dimensional array that is equal in length to the number of rows of matrix where each
element in the array contains the sum of all the elements in the corresponding row of matrix. You can
assume the precondition that all row lengths are equal.

public static double[] sumRows(double[][] matrix) {
double[] rowSum = new double[matrix.length];

for(int row=0; row<matrix.length; row++) {
for(int col=0; col<matrix[row].length; col++) {
rowSum[row] += matrix[row][col];
}
+

return rowSum;

Page 1 of 2

Introduction to Java English Name:

Worksheet: 2D Array Practice 2

©2025 Chris Nielsen — www.nielsenedu.com

4.

OLooNOOUTEhW N —

Write a method named sumCols that takes a two-dimensional array of double named matrix and
returns a one-dimensional array that is equal in length to the number of columns of matrix where each
element in the array contains the sum of all the elements in the corresponding column of matrix. You
can assume the precondition that there is at least one row in the matrix, and that all row lengths are
equal.

public static double[] sumCols(double[][] matrix) {
double[] colSum = new double[matrix[0].length];

for(int row=0; row<matrix.length; row++) {
for(int col=0; col<matrix[row].length; col++) {
colSum[col] += matrix[row][col];
}
}

return colSum:

Write a method named verifyRectangular that takes a two-dimensional array of double named
matrix and verifies that every row in the two-dimensional array has the same length, returning true
if it is a rectangular matrix (all row lengths equal), otherwise false. You can assume the precondition
that there is at least one row in the maxtrix.

ooNOOULPhhW N =

oo~NoOOULPhhWwW N =

// enhanced for loop version
public static boolean verifyRegular(double[][] matrix) {

int numCols = matrix[0].length;

for(double[] row: matrix) {
if(row.length != numCols) {
return false;
b
¥
return true;

}

// for loop version
public static boolean verifyRegular(double[][] matrix) {

int numCols = matrix[0].length;

for(int row = 0; row < matrix.length; row++) {
if(matrix[row].length != numCols) {
return false;
¥
b

return true;

Page 2 of 2

